STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49 AMSTERDAM

ZW 1956-026/2

On the Minkowski-Hlawka theorem

C.G. Lekkerkerker

MATHEMATICS

ON THE MINKOWSKI-HLAWKA THEOREM

BY

C. G. LEKKERKERKER

(Communicated by Prof. J. F. Koksma at the meeting of March 24, 1956)

Let $R_n(n \ge 2)$ be the real Euclidean space of points $x = (x_1, ..., x_n)$. Let O be the origin. The theorem of Minkowski-Hlawka asserts that, if K is a bounded star domain in R_n , of volume V and symmetric about O, there exists a lattice, which is admissible for K and whose determinant does not exceed $V/2\zeta(n)$, where $\zeta(n) = 1 + 2^{-n} + 3^{-n} + \ldots$ Various proofs of this theorem have been given [1, 2, 3, 4, 5]. In all these proofs the lattice found may have a rather contorted form: if S is any sphere about O and the volume of K has a fixed value, then, for suitably chosen K, these proofs lead to a lattice which does not have a basis contained in S. It is also clear that the proofs of Siegel [6] and Weil [7] do not give us any information concerning the form of the lattices which have the required properties.

By applying the Brunn-Minkowski theorem, Mahler [8] and Davenport-Rogers [9] obtained improvements of the theorem of Minkowski-Hlawka in the case of convex bodies. The results of these authors are as follows. For $n \ge 2$, let c_n denote the lower bound of V/Δ for all centrally symmetric convex bodies in R_n , V being the volume and Δ denoting the critical determinant of K; it is the largest positive number such that, for all K, there exists a K-admissible lattice with determinant not exceeding V/c_n . By the theorem of Minkowski-Hlawka, $c_n \ge 2\zeta(n)$. Now Mahler found that

(1)
$$c_2 \ge 2\sqrt{3}, c_n > 2\zeta(n) + 1/6 \text{ for all } n,$$

whereas Davenport-Rogers proved that

$$\liminf_{n\to\infty} c_n \ge c,$$

where c = 4.921 ... is the solution of

(2)
$$c \log c = 2(c-1)$$
 $(c>1)$.

In this note I shall prove two theorems. Firstly, I shall show

Theorem 1. Let c be defined by (2). Then $c_n > c$ for $n \ge 5$.

Next, I shall show that, for an arbitrary convex body K, by using the method of proof employed by Mahler and Davenport-Rogers, one can find a lattice which has the properties discussed and, in addition,

has a basis contained in some relatively small sphere about O. More precisely, I shall prove the following

Theorem 2. Let the numbers $\bar{c}_2, \bar{c}_3, \dots$ be given by

(3)
$$\bar{c}_2 = 3$$
, $\bar{c}_3 = 3.82$, $\bar{c}_4 = 4.41$, $\bar{c}_5 = 4.80$, $\bar{c}_6 = c$ for $n \ge 6$.

Let κ_n be the volume of the n-dimensional unit sphere. Let K be a convex body in R_n , of volume V and symmetric about O. Then there exists a K-admissible lattice, whose determinant does not exceed V/\bar{c}_n and which, after a suitable rotation about O, has a basis contained in the cube defined by

(4)
$$|x_i| < b \left(V/\varkappa_n \right)^{1/n} (i = 1, ..., n),$$

where, for all n, one may take b = 2.13.

We note that, since $\varkappa_n = \pi^{n/2}/\Gamma\left(\frac{n+2}{2}\right)$, $\varkappa_n^{-1/n}$ is asymptotically equal to $\sqrt{n/(2\pi e)}$. Further, the cube defined by (4) is contained, also after an arbitrary rotation, in the sphere with centre at O and radius $\sqrt{n} \cdot b(V/\varkappa_n)^{1/n}$. So the assertion of theorem 2 can also be stated in the following somewhat weaker form: there exists a K-admissible lattice, whose determinant does not exceed V/\bar{c}_n and which has a basis contained in the sphere

$$x_1^2 + \ldots + x_n^2 < (b_1 \, n \, V^{1/n})^2,$$

where b_1 is some positive constant not depending on K and n.

The proofs of the above theorems will be preceded by a number of lemmas. The first two of these lemmas are the main steps in the proof of Davenport-Rogers and are also fundamental for our purpose. For the proofs I refer to the paper mentioned above. Further, in particular, lemmas 4 and 5 deal with the volumes of the sections of a convex body or a star body by planes through O. Lemma 5 is perhaps of interest by itself.

The following notations will be used. For given K and real a, denote by V(a) the (n-1)-dimensional volume of the section of K by $x_n=a$. For each (n-1)-dimensional hyperplane Π through O, let $v(\Pi)$ denote the (n-1)-dimensional volume of $K \cap \Pi$. Further, for each point x, write $|x|=(x_1^2+\ldots+x_n^2)^{1/2}$. If $x\neq O$, then let Π_x denote the (n-1)-dimensional hyperplane, which passes through O and is orthogonal to the vector x. Finally, let ω_n denote the area of the unit sphere in R_n , so that

(5)
$$\omega_n = n \varkappa_n \quad (n \ge 2).$$

Lemma 1.1) Let \mathcal{L} be an (n-1)-dimensional lattice in the space

$$1 < rac{n(1-eta^{1/(n-1)})}{1-eta^{n/(n-1)}} < n, ext{ if } 0 < eta < 1.$$

¹⁾ Lemma 1 says a little more than lemma 2 in the paper of DAVENPORT-ROGERS. but follows immediately from the proof of that lemma. Lemma 2 follows from their lemma 3, if one puts $\beta = (1 + \delta/n)^{-n+1}$ and notes that

 $x_n = 0$, with determinant $d(\mathcal{L})$, which has no point (except 0) in K. Suppose that $\alpha > 0$, and

(6)
$$\sum_{t=1}^{\infty} V(\alpha t) < d(\mathcal{L}).$$

Then there exists a point g of the form $g = (g_1, ..., g_{n-1}, \alpha)$, such that the lattice generated by \mathcal{L} and g is admissible for K.

Lemma 2. Let β be a real number with $0 < \beta < 1$ and let α be defined by

(7)
$$\alpha = \frac{V}{2V(0)} \cdot \frac{n(1-\beta)^{1/(n-1)}}{1-\beta^{n/(n-1)}}.$$

Then

(8)
$$\sum_{t=0}^{\infty} V(\alpha t) \leq \beta V(0).$$

It is convenient to deduce from lemma I the following

Lemma 3. The assertion of lemma 1 remains true, if \mathcal{L} is allowed to have points on the boundary of K and if the condition (6) is replaced by

(6')
$$\sum_{t=1}^{\infty} V(\alpha t) \leq d(\mathcal{L}).$$

Proof. Let $\mathscr L$ and α be such that (6') holds and that $\mathscr L$ has no point (except O) in the interior of K. For each positive integer r, let $\mathscr L_r$ be the lattice $(1+r^{-1})\mathscr L$. Then $\mathscr L_r$ has no point (except O) in K and (6) holds, with $\mathscr L_r$ instead of $\mathscr L$. [So, by lemma 1, there exists a point $g^{(r)}$ in the plane $x_n = \alpha$, such that the lattice Λ_r generated by $\mathscr L_r$ and $g^{(r)}$ is admissible for K. Clearly there exists an increasing sequence of positive integers r_1, r_2, \ldots , such that Λ_{r_k} , for $k \to \infty$, converges to a lattice Λ generated by $\mathscr L$ and some point g in the plane $x_n = \alpha$. By a familiar argument 1), Λ is admissible for K. This proves the lemma.

Lemma 4. Let K be a convex body in R_n , of volume $V = \varkappa_n$, symmetric about O. Then there exists an (n-1)-dimensional hyperplane Π , which passes through O, such that

$$(9) \qquad \qquad \frac{1}{2} \varkappa_n \le v(\Pi) \le \frac{1}{2} n \varkappa_n.$$

Proof. Let x' be a point on the boundary of K, for which |x'| is maximal. Since $V = \varkappa_n$, K is not properly contained in the unit sphere, and so $|x'| \ge 1$. Write $\Pi' = \Pi_{x'}$, and consider the cone C, with vertex at x' and with the intersection $K \cap \Pi'$ as a basis.

Since K is convex, C is contained in K. Hence, since K is also symmetric about O,

$$V = \varkappa_n \ge 2V(C) = \frac{2}{n}|x'| \cdot v(\Pi') \ge \frac{2}{n}v(\Pi'),$$

hence

$$v(\Pi') \leq \frac{1}{2}n\varkappa_n$$
.

¹⁾ See e.g. Mahler [10], proof of theorem 8.

Next, let x'' be a point on the boundary of K, such that |x''| is minimal. Since the unit sphere is not properly contained in K, we now have $|x''| \le 1$. Write $\Pi'' = \Pi_{x''}$ and, for real a, denote by W(a) the (n-1)-dimensional volume of the intersection of K and the plane which passes through ax'' and is parallel to Π'' . In particular, $W(0) = v(\Pi'')$. In virtue of the Brunn-Minkowski theorem 1), the expression $\sqrt[n-1]{W(a)}$ is a concave function of a. Further, by the symmetry of K, this function is even. Hence

of a. Further, by the symmetry of K, this function is even. Hence $W(a) \leq W(0)$, for all a, and so

$$V = \varkappa_n \le 2|x''| \cdot W(0) \le 2W(0) = 2v(\Pi'').$$

Hence

$$v(\Pi'') \ge \frac{1}{2} \varkappa_n$$
.

Since the point of intersection of the boundary of K and a straight line through O varies continuously, as the direction of this line varies, the volume $v(\Pi)$ varies continuously with Π . Then it follows from the above estimates for $v(\Pi')$ and $v(\Pi'')$ that Π may be chosen such that (9) holds.

When K is the n-dimensional unit sphere, then, for all Π , $v(\Pi)$ is equal to \varkappa_{n-1} . Here, since $\varkappa_n = \pi^{n/2}/\Gamma\left(\frac{n+2}{2}\right)$, the number \varkappa_{n-1} is asymptotically equal to $\sqrt{n/(2\pi)} \cdot \varkappa_n$. One might conjecture that in lemma 4 the plane Π can always be chosen in such a way that $v(\Pi) = \varkappa_{n-1}$. But it seems difficult to decide whether this is true. In the following lemma I shall prove (for a much wider class of bodies) that a certain mean value of $v(\Pi)$ is at most equal to \varkappa_{n-1} . As a consequence, in lemma 4 the plane Π may be chosen such that instead of (9) we have

$$(9') \frac{1}{2} \varkappa_n \leq v(\Pi) \leq \varkappa_{n-1}.$$

Lemma 5. Let K be a bounded star domain (not necessarily symmetric about 0), of volume \varkappa_n . Let S_{n-1} be the sphere $x_1^2 + \ldots + x_n^2 = 1$. For $x \in S_{n-1}$, let $v(\Pi_x)$ be the (n-1)-dimensional volume of $K \cap \Pi_x$. Then we have

(10)
$$\left[\frac{1}{\omega_n}\int_{S_{n-1}} \left\{v\left(\Pi_x\right)\right\}^{n/(n-1)} dx\right]^{(n-1)/n} \leq \varkappa_{n-1}.$$

Proof. For $x \in S_{n-1}$, denote by f(x) the uniquely determined positive number λ , for which λx belongs to the boundary of K. Clearly f(x) is a positive, continuous function. Expressing the volume of K in terms of f(x) we get

$$\varkappa_n = \frac{1}{n} \int_{S_{n-1}} \{f(x)\}^n dx.$$

For given $x \in S_{n-1}$, let us denote by $S_{n-2}(x)$ the set of points y with

$$y_1^2 + \ldots + y_n^2 = 1$$
, $y_1 x_1 + \ldots + y_n x_n = 0$.

¹⁾ See Bonnesen-Fenchel [11], pp. 71 and 88.

Then for $v(\Pi_x)$ we have the expression

$$v(\Pi_x) = \frac{1}{n-1} \int_{S_{n-1}(x)} \{f(y)\}^{n-1} dy.$$

To the last integral we apply Hölder's inequality. This gives

$$\begin{split} v\left(\Pi_{x}\right) & \leq \frac{1}{n-1} \left[\int\limits_{S_{n-2}(x)} \{f(y)\}^{n} \, dy \right]^{(n-1)/n} \cdot \left[\int\limits_{S_{n-2}(x)} dy \right]^{1/n} \\ & = \frac{1}{n-1} \, \omega_{n-1}^{1/n} \left[\int\limits_{S_{n-2}(x)} \{f(y)\}^{n} \, dy \right]^{(n-1)/n}, \end{split}$$

hence, on account of (5),

$$\{v(\Pi_x)\}^{n/(n-1)} \le \frac{1}{n-1} \varkappa_{n-1}^{1/(n-1)} \int_{S_{n-1}(x)} \{f(y)\}^n dy.$$

The inequality (10) will follow if we can prove that

(11)
$$\int_{S_{n-1}} dx \int_{S_{n-2}(x)} \{f(y)\}^n dy = \omega_{n-1} \int_{S_{n-1}} \{f(y)\}^n dy;$$

for then we have

$$\int\limits_{S_{n-1}} \{v(\Pi_x)\}^{n/(n-1)} \, dx \leq \frac{1}{n-1} \, \varkappa_{n-1}^{1/(n-1)} \, \omega_{n-1} \cdot n\varkappa_n = \varkappa_{n-1}^{n/(n-1)} \, \omega_n.$$

Let δ be a small positive number. We define a function $\phi(x, y)$ of two independent variables x, y, as follows:

$$\phi(x, y) = \begin{cases} \{f(y)\}^n & \text{if } |xy| \le \delta \\ 0 & \text{if } |xy| > \delta \end{cases} (x, y \in S_{n-1}),$$

where $xy = x_1y_1 + ... + x_ny_n$. Since f(y) is a continuous function of y, we certainly have

$$\int_{S_{n-1}} \int_{S_{n-1}} \phi(x, y) \, dx \, dy = \int_{S_{n-1}} \int_{S_{n-1}} \phi(x, y) \, dy \, dx.$$

We further have

$$\int_{S_{n-1}} \phi(x, y) \, dy \sim 2 \, \delta \int_{S_{n-2}(x)} \{f(y)\}^n \, dy \text{ as } \delta \to 0,$$

$$\int_{S_{n-1}} \phi(x, y) \, dx = \{f(y)\}^n \int_{|xy| \le \delta} dx \sim 2 \, \delta \, \omega_{n-1} \{f(x)\}^n \text{ as } \delta \to 0.$$

From these relations (11) follows. This proves the lemma.

Lemma 6. Let c be the solution of (2). Then, if a > c and $n \ge 5$,

(12)
$$\frac{2}{n} \frac{a^{n/(n-1)} - 1}{a^{1/(n-1)} - 1} > c.$$

Proof. Since the left-hand member of (12) can be written as a polynomial in $a^{1/(n-1)}$, with positive coefficients, it is an increasing function of a. Hence it is sufficient to prove that

(12')
$$\frac{2}{n} \frac{c^{n/(n-1)}-1}{c^{1/(n-1)}-1} \ge c \quad \text{for } n \ge 5.$$

Put $y_n = c^{1/(n-1)} - 1$. Then $n = 1 + \log c/\log (y_n + 1)$ and so the inequality (12') takes the form

$$(12'') \frac{2\log(y_n+1)}{\log c + \log(y_n+1)} \left(c + \frac{c-1}{y_n}\right) \ge c \text{for } n \ge 5.$$

The quantity y_n is positive and tends to zero for $n \to \infty$. We now consider the function

$$f(y) = \frac{2\log(y+1)}{\log c + \log(y+1)} \left(c + \frac{c-1}{y}\right) \quad (y > 0).$$

Clearly, by (2),

$$\lim_{y \to +0} f(y) = \frac{2}{\log c} (c-1) = c.$$

We shall prove that f(y) is a steadily increasing function of y for 0 < y < 0.5. Differentiating f(y) and using (2) we get

$$\begin{split} f'(y) &= -\frac{c-1}{y^2} \cdot \frac{2\log{(y+1)}}{\log{c} + \log{(y+1)}} + \left(c + \frac{c-1}{y}\right) \cdot \frac{2\log{c}}{(y+1)\lceil\log{c} + \log{(y+1)}\rceil^2} \\ &= \frac{2(c-1)}{y^2(y+1)\lceil\log{c} + \log{(y+1)}\rceil^2} \, \psi(y), \end{split}$$

with

$$\psi \left(y \right) = - \left({y + 1} \right)\,\log \left({y + 1} \right)\,\left[{\log c + \log \left({y + 1} \right)} \right] + 2{y^2} + \left({2 - \frac{2}{c}} \right)y.$$

We have $\psi(0) = 0$. Further,

$$\psi'(y) = -\left[\log^2(y+1) + (2 + \log c)\log(y+1) + \log c\right] + 4y + 2 - \frac{2}{c},$$

$$\psi''(y) = -\frac{1}{y+1}\left[2\log(y+1) + 2 + \log c\right] + 4 \quad (y \ge 0).$$

Clearly
$$\psi'(0) = -\log c + 2 - \frac{2}{c} = 0$$
. Next,

$$2 \log (y+1) + 2 + \log c < 0.4 + 2 + 1.6 = 4$$
 for $0 < y < 0.2$,

$$2 \log (y+1) + 2 + \log c < 1 + 2 + 1.6 < 4.8$$
 for $0.2 \le y < 0.5$.

Hence $\psi''(y) > 0$, and so $\psi'(y) > 0$, for 0 < y < 0.5. Then also $\psi(y) > 0$, and so f'(y) > 0 for 0 < y < 0.5.

It follows that f(y) > c for 0 < y < 0.5. Since $0 < y_n < 0.5$ for $n \ge 5$, this proves (12") and so proves the lemma.

Lemma 7. If a is a number with c < a < 6, and $n \ge 6$, then

(13)
$$\frac{94}{100} \ a < \frac{2}{n} \frac{a^{n/(n-1)} - 1}{a^{1/(n-1)} - 1} < 6.$$

Proof. Put n-1=m, so that $m \ge 5$. Write $a_m = \frac{2}{m+1} \frac{a^{(m+1)/m}-1}{a^{1/m}-1}$. Since a_m is a steadily increasing function of a, we have

$$\begin{split} a_m &< \frac{2}{m+1} \, \frac{6^{(m+1)/m} - 1}{6^{1/m} - 1} = \frac{2}{m+1} \left(6 + \frac{5}{6^{1/m} - 1} \right) \\ &< \frac{2}{m+1} \left(6 + \frac{5}{m^{-1} \log 6 + \frac{1}{2} m^{-2} \log^2 6} \right) = \frac{6}{m+1} \left(2 + \frac{10}{6 \log 6} \cdot \frac{m}{1 \cdot + \frac{1}{2} m^{-1} \log 6} \right). \end{split}$$

Hence $a_m < 6$, since

$$\frac{10}{6\log 6} = 0.9416 \dots < (1 - m^{-1}) \left(1 + \frac{1}{2}m^{-1}\log 6\right) \text{ for } m \ge 5.$$

Further, since $\frac{a-1}{a \log a}$ is steadily decreasing for c < a,

$$\begin{aligned} \frac{a_{m}}{a} &= \frac{2}{m+1} \left(1 + \frac{a-1}{a(a^{1/m}-1)} \right) > \frac{2}{m+1} \left(1 + m \cdot \frac{a-1}{a \log a} \left(1 - \frac{1}{2m} \log a \right) \right) \\ &> \frac{2}{m+1} \left(1 + \frac{5m}{6 \log 6} - \frac{a-1}{2a} \right) > \frac{10}{6 \log 6} > \frac{94}{100}. \end{aligned}$$

This proves (13).

Proof of theorem 1. By (2), $c_2 \ge 2\sqrt{3} > 1$. Suppose $n \ge 3$, and that $c_{n-1} > 1$. Let K be a convex body in R_n , of volume V, symmetric about O. Consider the section of K by $x_n = 0$. It is an (n-1)-dimensional convex body, symmetric about O, of volume V(0). By the definition of c_{n-1} , the critical determinant of this body is at most equal to $V(0)/c_{n-1}$, and so there exists an (n-1)-dimensional lattice $\mathscr L$ in the plane $x_n = 0$, of determinant $d(\mathscr L) = V(0)/c_{n-1}$, which has no point (except O) in the interior of K.

Put $\beta = c_{n-1}^{-1}$. Since we assumed that $c_{n-1} > 1$, we have $0 < \beta < 1$. For this β let α be defined by (7). Then, from lemma 2,

$$\sum_{t=1}^{\infty} V(\alpha t) \leq \beta V(0) = V(0)/c_{n-1} = d(\mathcal{L}).$$

In virtue of the lemmas 1 and 3 there now exists a point g of the form $g = (g_1, \ldots, g_{n-1}, \alpha)$, such that the lattice Λ generated by \mathcal{L} and g is admissible for K. It follows that the critical determinant of K, Λ say, is at most equal to $\alpha d(\mathcal{L})$. Hence

$$V/\varDelta \geq \frac{c_{n-1}V}{\alpha V(0)} = \frac{2c_{n-1}}{n} \frac{1 - c_{n-1}^{-n/(n-1)}}{1 - c_{n-1}^{-1/(n-1)}} = \frac{2}{n} \cdot \frac{c_{n-1}^{n/(n-1)} - 1}{c_{n-1}^{1/(n-1)} - 1}.$$

From the arbitrariness of K it then follows that

(14)
$$c_n \ge \frac{2}{n} \frac{c_{n-1}^{n/(n-1)} - 1}{c_{n-1}^{1/(n-1)} - 1}.$$

From (14) it follows that $c_n > 1$, since we assumed that $c_{n-1} > 1$. Then it follows, by induction on n, that (14) holds for all $n \ge 3$. Using the relation $c_2 \ge 2\sqrt{3}$ and applying (14) with n=3,4,5 we find that $c_5 > c = 4.921...$ Hence, by (14) and lemma 6, we have $c_n > c$ for $n \ge 5$. This proves the theorem.

Proof of theorem 2. We define numbers $d_2, d_3, ...$ as follows:

(15)
$$d_2 = 3, \ d_n = \frac{2}{n} \frac{d_{n-1}^{n/(n-1)} - 1}{d_{n-1}^{1/(n-1)} - 1} \text{ for } n \ge 3.$$

Clearly $d_n > 1$ for all n. By induction on n, we shall prove the following assertion:

Let b be any number $\geq \frac{200}{94}$. Then there exists a lattice Λ with the following properties:

- 1. the lattice Λ is admissible for K
- 2. the determinant of Λ is equal to V/d_n
- 3. A has a basis contained in the cube

$$W: |x_i| < b (V/\varkappa_n)^{1/n} \quad (i = 1, 2, ..., n)$$

4. for each point x of the space there exists a point $y \in \Lambda$, such that $x-y \in W$.

In proving this assertion it is no loss of generality to suppose that $V = \varkappa_n$. First consider the case n=2 and suppose that $V = \varkappa_2 = \pi$. Then there exists a point x' on the boundary of K at distance 1 from O. It is no loss of generality to suppose that x' is the point (1, 0). Then the line $x_2 = \pi/3$ intersects K in a segment of length ≤ 1 , since otherwise the volume of K would be greater than π . For a similar reason the line $x_2 = 2\pi/3$ does not intersect K. Consequently, there exists a K-admissible lattice A, generated by the point (1, 0) and a point of the form $(a, \pi/3)$. Here we may take a such that $|a| \leq \frac{1}{2}$. Hence A has a basis contained in the square

$$|x_i| \le \pi/3 < b (i = 1, 2).$$

Next, for each point x of the plane there exist integers u and v, such that $x-u\cdot(a,\pi/3)-v\cdot(1,0)$ is contained in the square $|y_i|< b$ (i=1,2). Finally, Λ has determinant $d(\Lambda)=\pi/3$. This proves the assertion in the case n=2.

Now let $n \ge 3$ and suppose that the assertion is true, with n replaced by n-1. Let K be a centrally symmetric convex in n dimensions, of volume \varkappa_n . As we already remarked above (see the relation (9')), it follows from the lemmas 4 and 5 that there exists an (n-1)-dimensional plane Π through O, such that the (n-1)-dimensional volume of $K \cap \Pi$ is comprised between $\frac{1}{2}\varkappa_n$ and \varkappa_{n-1} . It is no loss of generality to suppose that Π is the plane $\varkappa_n=0$, so that

$$(16) \frac{1}{2} \varkappa_n \leq V(0) \leq \varkappa_{n-1}.$$

Hence $V(0)/\varkappa_{n-1} \le 1$. So, according to the induction hypothesis, there exists an (n-1)-dimensional lattice $\mathscr L$ in the plane $x_n=0$ with the following properties:

- 1) \mathcal{L} has no point (except O) in the interior of K
- 2) \mathscr{L} has determinant $d(\mathscr{L}) = V(0)/d_{n-1}$
- 3) \mathscr{L} has a basis contained in the cube

$$|x_i| < b(i = 1, 2, ..., n - 1), x_n = 0$$

4) for each point x in the space $x_n = 0$ there exists a point $y \in \mathcal{L}$, such that $|x_i - y_i| < b$ for i = 1, 2, ..., n - 1.

We now apply the lemmas 2 and 3. Take $\beta = 1/d_{n-1}$. Then $0 < \beta < 1$. With this value of β , let α be defined by (6). Then, by 2) and lemma 2,

$$\sum_{t=1}^{\infty} V(\alpha t) \leq d(\mathcal{L}).$$

Hence, in virtue of 1) and lemma 3, there exists a point g of the form $g = (g_1, \ldots, g_{n-1}, \alpha)$, such that the lattice Λ generated by \mathscr{L} and g is admissible for K. We shall prove that this lattice possesses also the properties 2, 3, 4.

Using 2) and the definitions of α and d_n we find that the determinant of Λ is given by

$$d\left(\varLambda\right) = \alpha d\left(\mathscr{L}\right) = \frac{V}{2d_{n-1}} \frac{n(1 - d_{n-1}^{-1/(n-1)})}{1 - d_{n-1}^{-n/(n-1)}} = \frac{V}{2} \frac{n(d_{n-1}^{1/(n-1)} - 1)}{d_{n-1}^{n/(n-1)} - 1} = V/d_n.$$

Next, in virtue of 4), there exists a point $y \in \mathcal{L}$, such that $|g_i - y_i| < b$ for i = 1, 2, ..., n - 1. Put g - y = x. Then Λ is generated by \mathcal{L} and x. Further $|x_i| < b$ for i = 1, 2, ..., n - 1 and $x_n = \alpha$. We prove that $\alpha < b$. We have $\alpha = \frac{V}{V(0)} \frac{d_{n-1}}{d_n}$. On account of (16), $\frac{V}{V(0)} \le 2$. From (15) one easily finds that $d_2 < d_3 < d_4 < d_5 < d_6 < 6$ and $d_6 > c$. Then, by lemma 6, $d_n > c$ for n > 6. Hence, by lemma 7, $\frac{94}{100} d_{n-1} < d_n < 6$ for $n \ge 7$. Hence $d_{n-1}/d_n < \frac{100}{94}$ for n = 3, 4, This shows that $\alpha < b$. It follows that Λ has a basis contained in the cube $|x_i| < b$ (i = 1, 2, ..., n). Finally, let x be an arbitrary point. There exists an integer u_n , such that $|x_n - u_n \alpha| < b$. In virtue of 4), there further exists a point $y \in \mathcal{L}$, such that $|x_i - u_n g_i - y_i| < b$ for i = 1, 2, ..., n - 1. Hence the point $x - u_n g - y$ is contained in the cube $|x_i| < b$ (i = 1, 2, ..., n).

This proves that Λ possesses the properties 1, 2, 3, 4. By induction on n, the truth of the assertion follows. Calculation gives $d_3 > 3.82$, $d_4 > 4.41$, $d_5 > 4.80$, whereas $d_n > c$ for $n \ge 6$. From this the theorem follows.

Mathematisch Centrum, Amsterdam

REFERENCES

- 1. HLAWKA, E., Zur Geometrie der Zahlen, Math. Z. 49, 285-312 (1943).
- 2. Rogers, C. A., Existence theorems in the geometry of numbers, Ann. of Math. (2) 48, 994-1002 (1947).
- 3. ———, The number of lattice points in a star body, J. London Math. Soc. 26, 307-310 (1951).
- 4. Malyšev, A. V., On the Minkowski-Hlawka theorem concerning a star body, Uspehi Matem. Nauk. (N.S.) 7, no 2 (48), 168-171 (1952). (Russian).
- Cassels, J. W. S., A short proof of the Minkowski-Hlawka theorem, Proc. Cambridge Philos. Soc. 49, 165-166 (1953).
- 6. SIEGEL, C. L., A mean value theorem in geometry of numbers, Ann. of Math. (2) 46, 340-347 (1945).
- Weil, A., Sur quelques résultats de Siegel, Summa Brasiliensis Math. 1, fasc. 4, 21-39 (1946).
- 8. Mahler, K., The theorem of Minkowski-Hlawka, Duke Math. J. 13, 611-621 (1946).
- 9. DAVENPORT, H. and C. A. ROGERS, Hlawka's theorem in the geometry of numbers, Duke Math. J. 14, 367-375 (1947).
- Mahler, K., On lattice points in n-dimensional star bodies, I. Existence theorems, Proc. Royal Soc. A 187, 151-187 (1947).
- 11. Bonnesen, T. and W. Fenchel, Theorie der konvexen Körper (Chelsea, 1947).